If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-19x+44=0
a = 2; b = -19; c = +44;
Δ = b2-4ac
Δ = -192-4·2·44
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-3}{2*2}=\frac{16}{4} =4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+3}{2*2}=\frac{22}{4} =5+1/2 $
| 5x-15+7x(x+4)=73 | | 4.5-6x=-6 | | y/9+7=9 | | K^2+k+18=0 | | 70=1/2(4x+x^2) | | 12t=45t.4t | | 3/7t-5=1.35+5/6t | | x-1.8=7.69 | | X^2-12x-216=0 | | V(x)=(20-2x)(29-2x)(x) | | u=6(8) | | y/3+8=9 | | 14x+40=12x+120 | | -167/45=-19/6n-12/5n | | y=2(-7/5)-2 | | 7.6=4.8-u | | 2x^2-22=8x | | 3(t-8)=-9 | | 5x4=6-44 | | 5x÷2=11+2x÷3 | | 7+23x=99 | | F=(9÷5)(k-273.15)+32 | | x+28+23x-6=70 | | x/12-1/6=x/2-1/4 | | 3-5=n-20 | | 2n^2-4n=-2 | | -20x+40=20x+20 | | -2+r/9=-3 | | 24=2(1+(1÷4l)) | | 3x-60=20 | | 8x-14-3x=-4 | | 105=5x-10 |